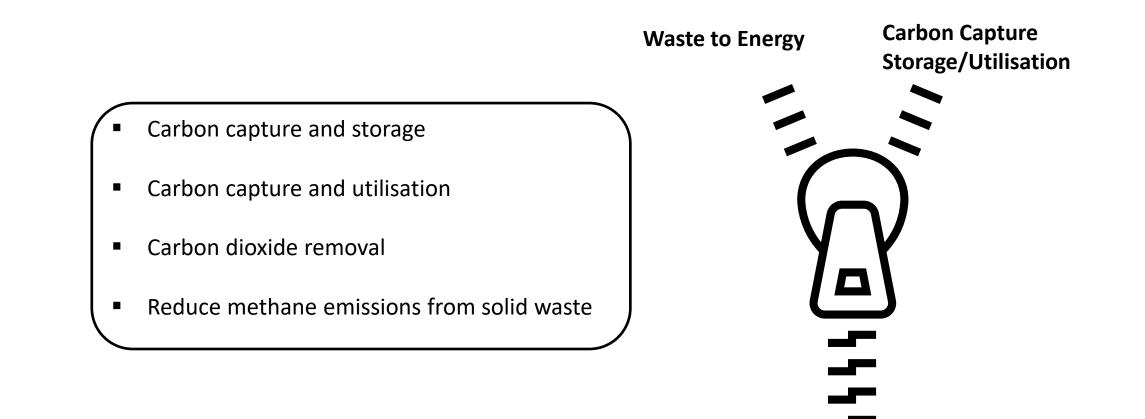


11 reasons why Carbon Capture should be prioritized in the Waste to Energy sector

ir. Benoit Englebert 26 October 2022

Introduction: key take-away of 6th IPCC report conclusions (April 2022)

- Besides the common mitigation options*, other measures are recognized to be **critical** to meet net zero:
 - Carbon capture and storage
 - Carbon capture and utilisation
 - Carbon dioxide removal
 - Reduce methane emissions from solid waste



Sixth Assessment Report WORKING GROUP III – MITIGATION OF CLIMATE CHANGE

> * i.e. renewable energy, electrification of transport, energy efficiency in building or material efficiency in industry, nature based solutions...

Introduction: key take-away of 6th IPCC report conclusions (April 2022)

11 reasons why Carbon Capture should first be deployed in the Waste to Energy sector

WtE plant in Bao An, China

1. The low hanging fruit: methane

- Today, humankind produces 2 bio tonnes of municipal solid waste per year.
- 70% of it is still landfilled: 1,4 bio tonnes per year, or
 45 000 kg per second
- Landfilling produces methane*
- Methane is 84X more harmful to the climate than CO₂ in its first 20 years in the atmosphere
- 18% of anthropogenic CH₄ emissions are from the waste sector, of which 90% from landfill and waste water.

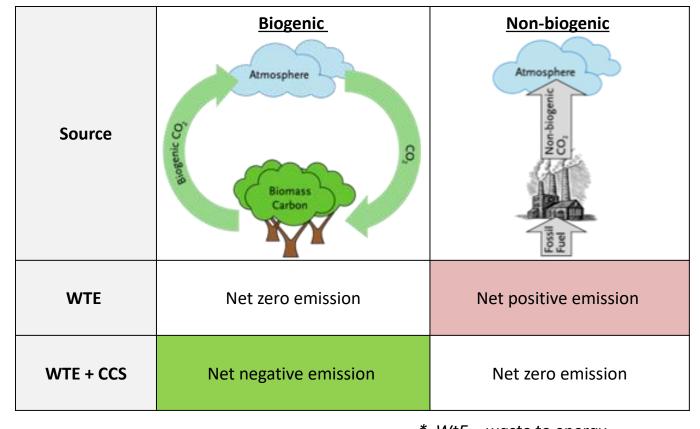
* Besides other dramatic consequences like air pollution, water contamination, soil degradation, plastic dissemination, disease/virus propagation, and definitive loss of the materials that are landfilled

1. The low hanging fruit: methane

Comparing emission factors, we need to urgently divert waste from landfills

600 kg CO_{2eq}/ton waste treated in Europe (100 yr) (CEWEP 2022)

Up to 5000 kg CO_{2eq} /ton waste treated (passive venting landfills - 20 yr) (Wang et al. 2020)



-20 kg CO_{2eq}/ton waste treated in Europe Including energy substitution and IBA recovery (100yr) (CEWEP 2022)

2. WtE + CCS = CDR * = negative CO_2 emissions

- 50-60% of municipal solid waste is from biogenic source (wood, paper and food waste)
- WTE integrated with CCS is uniquely positioned as one of the few negative CO₂ emissions technologies
- As a negative emissions technology, WTE integrated with CCS will be able to off-set the emissions of other more challenging CO₂ emitters

* WtE = waste to energy CC = carbon capture

CDR = carbon dioxide removal

3. Proven technical viability

	Project	Operation start	Technology	Scale	Status
Klemetsrud WTE in Oslo, Norway		2026	Amine	400 000 tCO ₂ per year	Starting construction
Duiven WTE, Netherlands		Q3 2019	Amine	100 000 tCO ₂ per year	Operational
Twence WTE, Netherlands	<image/>	2014	Amine	2-3 000 tCO ₂ per year	Operational
		Q4 2023	Amine	100 000 tCO ₂ per year	Construction to commence in 2022

4. Stable & Reliable operation

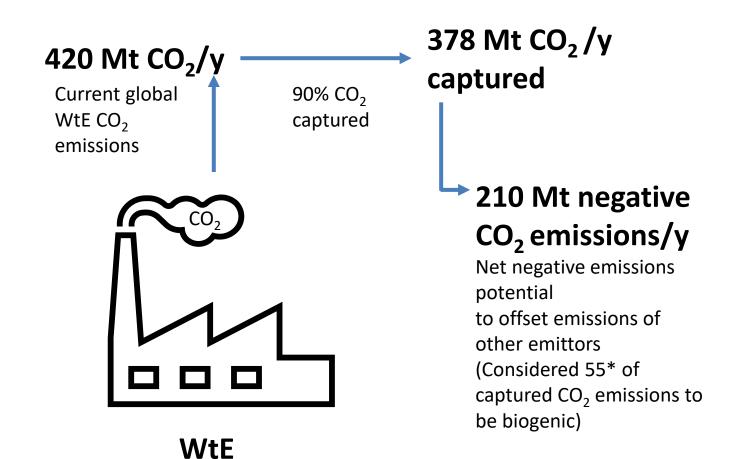
- WTE plants run continuously
- Availability > 8000 hours/year
- Planned yearly shutdown
- → Continuous delivery of:
 - steam
 - electricity

- CO₂

WtE plant in Singapore

5. Long term assests

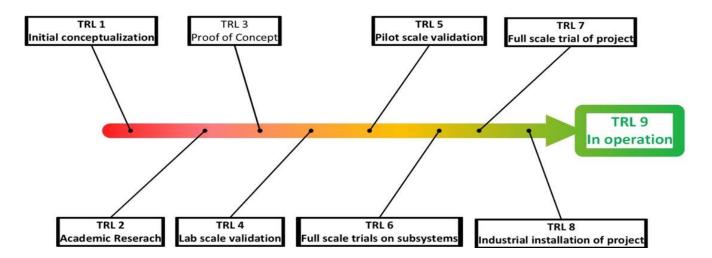
- WtE plants are backed up by long term contracts for waste supply and energy offtake
- WtE plants are local: close to the waste source and to the energy offtake
- No risk of delocalisation
- Some examples:
 - ISVAG in Belgium: built in 1989 and still operating smoothly
 - French WtE fleet: 127 plants with an average age of 27 years.



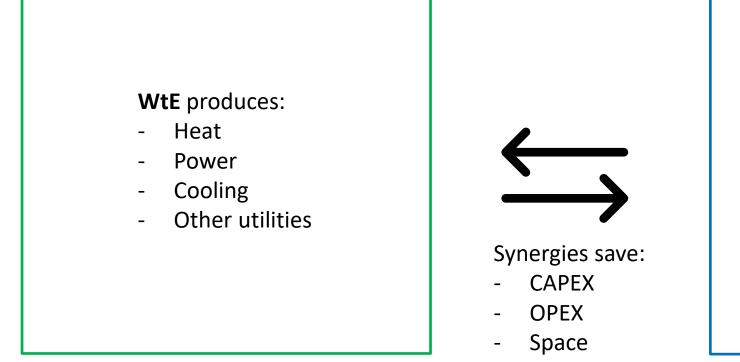
WtE plant in Antwerp, Belgium (ISVAG)

6. Ready to be deployed

- BECCS (Bio-Energy Carbon -Capture Storage) is of the four technologies ready to be deployed on large scale according National Academies the of Sciences, Engineering and Medicine.
- 2500 WtE plants currently in operation. Total treatment capacity of 420 million tpy (Ecoprog 2022)

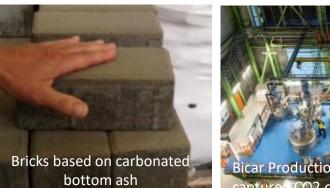


Bialystok (Poland) **15,5 ton MSW/h** or 372 ton MSW /day



Bao An (China) **367 ton MSW/h** or 8800 ton MSW /day

8. Integration and Synergies between WtE and CC



CC consumes:

- Heat
- Power
- Cooling
- Other utilities

Other potential synergies:

- Flue gas cleaning
- Carbonated residues for bricks
- Sodium bicarbonate for flue gas cleaning

9. Cost competitiveness

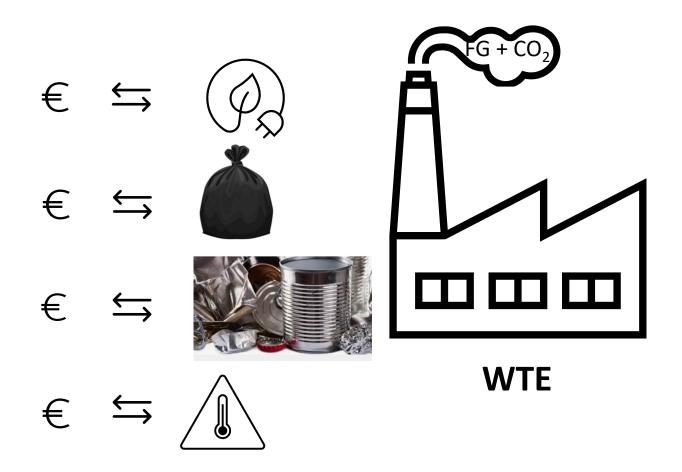
Sector	Estimated £/t CO ₂		
Waste to Energy	66 -110 £/t CO ₂		
Iron production & other metal processing	80 £/t CO ₂		
Cement & lime	80-140 £/t CO ₂		
Other Non-metallic Minerals	140 £/t CO ₂		
Glass	140 £/t CO ₂		
Refining & chemicals	140 - 200 £/t CO ₂		

Comparison of CCUS Costs by Industrial sector Data Source: Eunomia report CCUS development pathway for the WtE sector

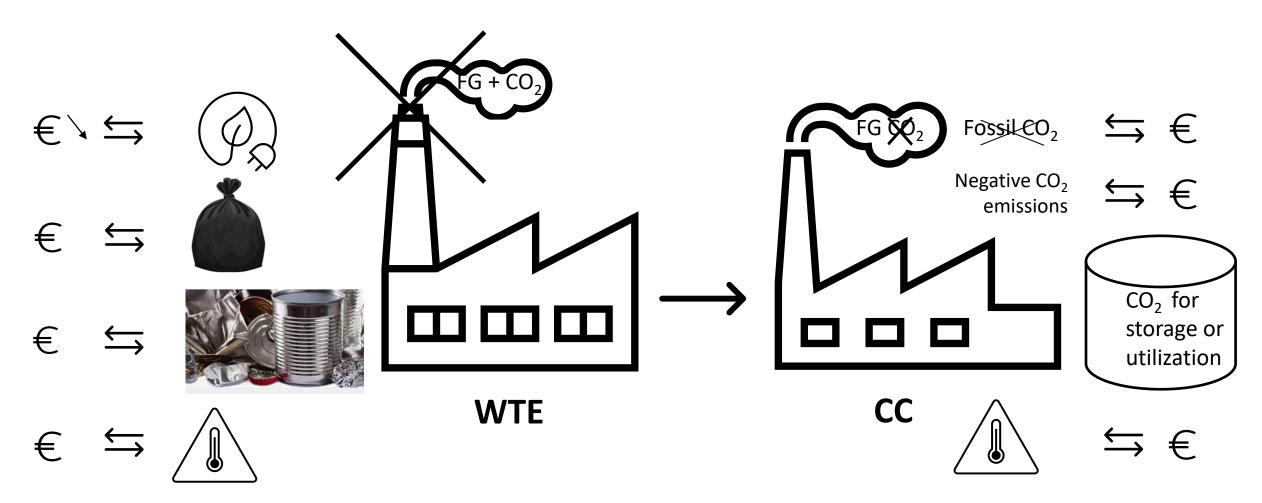
Factors influencing the total CC cost:

- Energy penalty \IPS level of synergy with WtE
- Technology
- Solvent
- Distance from source to storage/utilisation site

10. Renewable Energy


- Carbon capture is very energy intensive
- Energy utilized for capturing carbon should be renewable energy
- The majority of energy produced by a WtE is renewable energy

Direct air capture unit deployed in Iceland where there is a surplus of renewable energy available.


11. New financial incentive for project development

Actual economic model of a WtE plant

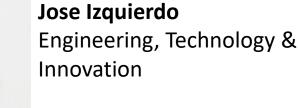
11. New financial incentive for project development

New economic model of a WtE plant combined with CC

Keppel Seghers and carbon capture

- Feasibility study of the integration of CC plant in the Runcorn ERF / 4 different technologies (1mio ton CO_2/y)
- Multiple CC feasibility studies in WTE in the pipe Asia
- Confidential dialogue with CC technology suppliers (amines, hot potassium, solid sorbents, etc...)
- Discussing pilot plant scale projects
- Chairing CCUS working group in Industry Association ESWET (European Suppliers of Waste to Energy Technologies)

WtE plant combined with CC in Runcorn, UK


Contacts at Keppel Seghers – Carbon Capture

Andrew Wightman Business development & project management

Andrew.wightman@keppelseghers.com

Jose.izquierdo@keppelseghers.com

Dr. Andreas Hoffman Engineering, Technology & Innovation

Andreas.hoffmann@keppelseghers.com

Benoit Englebert Business development & Strategy

Benoit.englebert@keppelseghers.com

Dr. Tom Croymans Technology, Innovation & Strategy

Tom.croymans@keppelseghers.com